Good overview of energy history and Japan’s situation

good discussion on history of oil and the “Great Game”

Churchill fired the starting gun, but all of the Western powers joined the race to control Middle Eastern oil. Britain clawed past France, Germany, and the Netherlands, only to be overtaken by the United States, which secured oil concessions in Turkey, Iraq, Bahrain, Kuwait, and Saudi Arabia. The struggle created a long-lasting intercontinental snarl of need and resentment. Even as oil-consuming nations intervened in the affairs of oil-producing nations, they seethed at their powerlessness; oil producers exacted huge sums from oil consumers but chafed at having to submit to them. Decades of turmoil—oil shocks in 1973 and 1979, failed programs for “energy independence,” two wars in Iraq—have left unchanged this fundamental, Churchillian dynamic, a toxic mash of anger and dependence that often seems as basic to global relations as the rotation of the sun.All of this was called into question by the voyage of the Chikyu “Earth”, a $540 million Japanese deep-sea drilling vessel that looks like a billionaire’s yacht with a 30-story oil derrick screwed into its back. The Chikyu, a floating barrage of superlatives, is the biggest, glitziest, most sophisticated research vessel ever constructed, and surely the only one with a landing pad for a 30-person helicopter. The central derrick houses an enormous floating drill with a six-mile “string” that has let the Chikyu delve deeper beneath the ocean floor than any other ship.The Chikyu, which first set out in 2005, was initially intended to probe earthquake-generating zones in the planet’s mantle, a subject of obvious interest to seismically unstable Japan. Its present undertaking was, if possible, of even greater importance: trying to develop an energy source that could free not just Japan but much of the world from the dependence on Middle Eastern oil that has bedeviled politicians since Churchill’s day.In the 1970s, geologists discovered crystalline natural gas—methane hydrate, in the jargon—beneath the seafloor. Stored mostly in broad, shallow layers on continental margins, methane hydrate exists in immense quantities; by some estimates, it is twice as abundant as all other fossil fuels combined. Despite its plenitude, gas hydrate was long subject to petroleum-industry skepticism. These deposits—water molecules laced into frigid cages that trap “guest molecules” of natural gas—are strikingly unlike conventional energy reserves. Ice you can set on fire! Who could take it seriously? But as petroleum prices soared, undersea-drilling technology improved, and geological surveys accumulated, interest rose around the world. The U.S. Department of Energy has been funding a methane-hydrate research program since 1982.Nowhere has the interest been more serious than Japan. Unlike Britain and the United States, the Japanese failed to become “the owners, or at any rate, the controllers” of any significant amount of oil. Not that Tokyo didn’t try: it bombed Pearl Harbor mainly to prevent the U.S. from blocking its attempted conquest of the oil-rich Dutch East Indies. Today, Churchill’s nightmare has come true for Japan: it is a military and industrial power almost wholly dependent on foreign energy. It is the world’s third-biggest net importer of crude oil, the second-biggest importer of coal, and the biggest importer of liquefied natural gas. Not once has a Japanese politician expressed happiness at this state of affairs.Japan’s methane-hydrate program began in 1995. Its scientists quickly focused on the Nankai Trough, about 200 miles southwest of Tokyo, an undersea earthquake zone where two pieces of the Earth’s crust jostle each other.

another consequence of all that natural gas from fracking and potential gas hydrates is lowering energy cost which makes clean energy development less economically viable, we saw this happen before!

“Methane hydrate could be a new energy revolution,” Christopher Knittel, a professor of energy economics at the Massachusetts Institute of Technology, told me. “It could help the world while we reduce greenhouse gases. Or it could undermine the economic rationale for investing in renewable, carbon-free energy around the world”—just as abundant shale gas from fracking has already begun to undermine it in the United States. “The one path is a boon. The other—I’ve used words like catastrophe.” He paused; I thought I detected a sigh. “I wouldn’t bet on us making the right decisions.”

 

For years, environmentalists have hoped that the imminent exhaustion of oil will, in effect, force us to undergo this virtuous transition; given a choice between no power and solar power, even the most shortsighted person would choose the latter. That hope seems likely to be denied. Cheap, abundant petroleum threw sand in the gears of solar power in the 1980s and stands ready to do it again. Plentiful natural gas, a geopolitical and economic boon, is a climatological shackle. To Vaclav Smil, the University of Manitoba environmental scientist, the notion that we can move so fast is naive, even preposterous. “Energy transitions are always slow,” he told me by e-mail. Modern energy infrastructures, assembled over decades, cannot be revamped overnight. Worse still, in his view, there is little public appetite for beginning the process, or even appreciating the magnitude of what lies ahead. “The world has been running into fossil fuels, not away from them.”

The energy efficiency guru Amory Lovins challenged Mann’s thesis in a post of his own after the story ran out, arguing that future oil supplies wouldn’t matter because increasingly cheap renewables and efficiency would crowd out oil all by themselves. Mann replied in his post. You can score it yourself, though I agree with Mann. Oil is so much better at what it does—containing easily portable energy—then any currently workable substitute that it’s difficult to see it the world voluntarily giving it up unless it becomes prohibitively expensive, or we see a real social shift that puts much greater value than we do now on preventing climate change. Looks like we’ll have to hope for—and work for—the latter.

via What If We Never Run Out of Oil? – Charles C. Mann – The Atlantic – Mozilla Firefox.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s